FastProxy: Hardware and Software Acceleration of
Stratum Mining Proxy

Guanwen Zhong*, Haris Javaid*, Hassaan Saadat?, Lingchao Xu$, Chengchen Hu* and Gordon Brebner!

*Xilinx, Singapore

J;University of New South Wales, Australia

§Bitmaintech Pte. Ltd., Singapore TXilinx, USA

{henryz, harisj, chengchen, gjb}@xilinx.com, h.saadat@unsw.edu.au, lingchao.xu@bitmain.com

Abstract—The Stratum protocol is the de facto protocol for
mining proxies in proof-of-work (PoW) based cryptocurrencies
such as Bitcoin. A Stratum mining proxy connects to an upstream
mining pool server and to downstream miners through TCP/IP
connections. The proxy receives periodic jobs from the pool and
broadcasts them to the miners. The broadcast operation becomes
a performance and scalability bottleneck when the number of
miners increases significantly. In this paper, we propose a hard-
ware/software co-designed architecture for the proxy to accelerate
the broadcast of periodic jobs. We customize the Stratum protocol
with a layer 2 broadcast mechanism instead of using TCP/IP
connections. The proposed architecture is implemented on a
Xilinx Zynq SoC (ARM processor and FPGA) board where the
layer 2 broadcast mechanism is offloaded on the FPGA. Our
experiments demonstrated a speedup of 2079 in transmission
time with 225 miners connected to the proxy, compared to an
implementation on an Intel i7 server.

I. INTRODUCTION

Over the last few years, blockchain technology has gained
huge momentum with applications in both financial and
non-financial domains. Blockchain is essentially a distributed
ledger of transactions, where a transaction represents execution
of some business logic agreed upon by the participating
parties. One of the most successful examples is the Bitcoin
cryptocurrency (highest market cap [1]), where transactions
represent creation or transfer of digital currency.

The Bitcoin network, as for many other cryptocurrencies,
is a peer-to-peer network of nodes as shown in Figure 1. The
nodes make up the full-node network and are responsible for
keeping the entire ledger. A node receives new blocks from
its neighboring nodes and updates its own copy of the ledger.
Furthermore, it receives unconfirmed transactions that should
be included in future blocks. A mining pool server primarily
acts as the interface between the nodes and the miners. It
periodically fetches unconfirmed transactions from the nodes
to create a new block, which is then sent to the miners as a
job. The miners execute a proof-of-work algorithm, and send
back valid nonce values (solutions to the mining problem). The
mining pool server uses one of the nonce values, that satisfies
the network difficulty, to create the newly-mined block and
sends it to one of the full nodes for propagation. Furthermore,
it manages the mining reward for the miners. For scalability
reasons, a mining proxy is used to manage the miners locally
while acting as a super miner to the mining pool server.

Motivation: The Stratum protocol [11] is the de facto
protocol for mining proxies in most successful proof-of-work
cryptocurrencies such as Bitcoin, Ethereum, etc. [1][7]. A
typical Bitmain set-up involves tens of thousands of miners
(e.g. 20,000) connected through switches to a mining proxy.
The mining proxy will periodically (every 1 minute) receive
a mining job from the mining pool server. Since the job for
all the miners is the same, the mining proxy will broadcast

Miner Network

Mining
Proxy

Full Node Network

Mining Pool -
Server

Broadcast the

new block
------- >

S: Switch
M: Miner

Fig. 1: A Typical Bitcoin Network

that job to all the miners. From an implementation point of
view, the mining proxy will keep 20,000 TCP/IP connections
with the miners, and will send the same job one by one. There
are two problems: (1) This becomes a performance bottleneck,
for example, it could take up to a few seconds to send the job
to all the miners, and (2) This is not scalable as there is a
single point of connection for all the miners, which limits the
maximum number of miners that can be connected.

In proof-of-work cryptocurrencies, most of the acceleration
efforts are focused on miners, and are dominated by ASIC
implementations. The network-dominated parts are typically
ignored, which can become a bottleneck and hamper scala-
bility. In this paper, we focus on software customization and
hardware acceleration of the mining proxy (to further improve
its performance and scalability) because current approaches
tend to deploy multiple mining proxies, which is not cost-
effective and involves high maintenance effort.

Contributions: In this work, we make the following two
observations: (1) The miners are connected to the mining proxy
through a few LAN switches, that is, they are physically co-
located, and (2) The job sent by the mining proxy to the miners
is exactly the same. We exploit these observations to customize
the Stratum protocol to use layer 2 broadcast mechanism
(broadcast over LAN) for periodic communication between
the mining proxy and the miners instead of using TCP/IP
connections. Furthermore, we propose a hardware/software
co-designed system where the layer 2 broadcast is offloaded
on an FPGA. The proposed hardware directly parses each
incoming job from the Ethernet interface, and sends it out
as a layer 2 broadcast to all the miners. As a result, the
entire kernel network stack is bypassed and, given that FPGAs
can perform fast packet processing, our hardware/software co-
design approach can achieve much better performance and
scalability. When implemented on a Zynq SoC with an ARM
processor and FPGA, our system can achieve up to 2079x
improvement in transmission time compared to an implemen-
tation on an Intel i7 server with 225 connected miners. This
demonstrates that a Stratum mining proxy can be run on a low-
cost standalone FPGA board instead of an Intel NUC (Next
Unit of Computing), which is a more costly current de facto
implementation platform within Bitmain.

miners mining proxy mining pool server

1. subscribe

2. dlfflCUlty;l:li) id, mining sub id,

xnonce1, xnonce2_size

7. subscribe b --nomo oo
- — 6. notify: job_id, prev block hash,

coinbase, merkle_branch,
clean_jobs, etc.

8. difficulty sub id, mining sub id,
xnoncel, xnonce2_size (different
from poal and other miners)

9. authorize

pool and other miners)

712, notify
broadcast through
TCP/IP connections.

Fig. 2: Original Stratum Proxy Workflow

II. CUSTOMIZED STRATUM PROTOCOL

Figure 2 shows the typical workflow of the mining proxy.
At the start (steps 1 and 2), the mining proxy sends a subscribe
request to the mining pool server. In return, it receives two
ids (one for the difficulty subscription and the other for the
mining subscription) and extranonce settings. In steps 3 and
4, the mining proxy authorizes itself with the mining pool
server so it can later submit its solution to the mining problem
in exchange for reward shares. The mining pool server starts
sending both set_difficulty and notify jobs to the mining proxy
(steps 5 and 6). When a new miner connects to the mining
proxy (steps 7 and 8) through a subscribe request, the mining
proxy returns subscription ids generated by itself instead of
the ones received from the mining pool server. The mining
parameters returned by the mining proxy are unique across
the miners, that is, each miner has its own mining parameters.
Just like the mining proxy, a miner also authorizes itself with
the mining proxy.

In a steady-state scenario, the mining proxy broadcasts the
incoming jobs from the mining pool server to the miners. There
are two types of jobs: (1) The set_difficulty job which directs
a miner to use the supplied difficulty when solving the mining
problem, and (2) The rnotify job which supplies the job id,
list of Merkle branches, and other information to the miner
to perform the mining operation. Although the miners get the
same job, every miner performs a different mining operation
based on its mining parameters. In this figure, the mining proxy
sends the job to all the miners one by one through the TCP/IP
connections (step 12).

We customize the mining proxy protocol (as shown in
Figure 3) such that after it receives a new job from the mining
pool, it creates a layer 2 broadcast packet with the payload
containing the details of the job. This layer 2 packet is then
sent out, which means all the miners connected through the
LAN switches will receive this packet, and hence the new
job from the proxy. This has two advantages: (1) The entire
TCP/IP kernel stack is bypassed which means transmissions
are much faster; and (2) The sending latency is independent
of the number of connected miners, which means the mining
proxy is more scalable and can handle many tens of thousands
of miners. The layer 2 broadcast operation can be implemented
in either software or hardware. For software implementation,
the kernel TCP/IP stack is used to receive the job. Then, a
layer 2 broadcast packet with the job details is created and

miners mining proxy mining pool server

'”‘2‘.‘8\ﬁ|cult’y’ sub id, mining

xnonce1, xnonce2_size

7. subscribe

coinbase, merkle_branch,
clean_jobs, etc.

4"Vsr.rdi\'ﬁu:ulty sub id, mining sub id,
xnonce1, xnonce2_size (different
from pool and other miners)

_____9. authorize

e o=
layer2 broadcast

Fig. 3: Customized Stratum Proxy Workflow

a raw socket over the Ethernet interface is used to send out
that packet from the mining proxy software. The hardware
implementation of our broadcast operation is described in the
next section.

III. HW/SW Co-DESIGNED MINING PROXY

The mining proxy consists of non-communication-intensive
functions and communication-intensive tasks. The non-
communication-intensive functions include connection estab-
lishment, subscribe, authorize, etc., as mentioned in Section 11,
while the communication-intensive tasks contain notify and
set_difficulty broadcasts. Thus, the mining proxy can exploit
a heterogeneous architecture by mapping non-communication-
intensive functions on to CPUs and offloading communication-
intensive tasks on to FPGAs.

In this work, we leverage Xilinx Zynq [13], a hetero-
geneous platform, to design an efficient and scalable min-
ing proxy. The Zynq architecture provides the software pro-
grammability of ARM processors and the hardware pro-
grammability of an FPGA on a single chip. The ARM pro-
cessors and FPGA are connected by Advanced eXtensible
Interface (AXI) interconnection and share access to memory
and other common peripherals such as UART, USB and Eth-
ernet. The hardware accelerators for layer 2 broadcasting are
designed on the FPGA logic and attached to AXI interconnect,
while the software part runs on the ARM processor.

Overview: The system architecture of the proposed mining
proxy acceleration is shown in Fig. 4. At a high level, the
packets sent from the ARM go through the network without
any interruption from our broadcast mechanism. Likewise,
all the packets received from the network go to the ARM
uninterrupted, except for the notify and set_difficulty packets.
The following paragraph briefly explains how packets flow
through the proposed system.

The notify or set_difficulty packets only come from up-
stream mining pools connected via Ethernet. Thus, for any
packet sent from the ARM (Path (D), it will be redirected to
the Dispatcher (Path (7)) via the Arbiter. Then, the Dispatcher
submits the packet to the TX path (Path (5)) of the Ethernet
subsystem. In this case, the FPGA logic just bypasses the
packet without modification. Any packet coming from the
network via the RX path of the Ethernet subsystem (Path (6))
will also be sent to the Dispatcher (Path (7)) and later submitted
to the ARM (Path (®). At the same time, the Sniffer sniffs

FPGA

®

L2 Broadcast
@

| Dispatcher }—
™>|®

RX
@ Ethernet

Fig. 4: System Architecture for Mining Proxy.

RX/TX

the packet (Path (@) and checks whether it is a notify or
set_difficulty packet. If the packet contains neither notify nor
set_difficulty data, the Sniffer will simply drop the packet.
Otherwise, it extracts the payload of the packet and sends it
to the L2 Broadcast to construct a layer 2 broadcast packet
(Path (3)). The newly-generated packet will then be submitted
to the Dispatcher (Path @) and sent out to the network through
the Ethernet subsystem (Path (5)).

Arbiter: It has two input channels (FIFOs) to buffer
packets coming from both the ARM (Path (1)) and the network
(Path (6)). Its output channel will periodically select packets
from the input channels in a round-robin fashion.

Sniffer: It sniffs any packet coming from the network
(Path (©—() and extracts its payload if it is a notify or
set_difficulty packet from a mining pool. The Sniffer has a finite
state machine (FSM) to first check whether the packet has valid
Ethernet, IP and TCP headers. If any invalid header is detected,
it simply drops the packet. For the valid packet, the Sniffer then
parses the payload of the packet (format shown in Fig. 5) and
searches the keywords, mining.notify and mining.set_difficulty,
to identify whether it is a notify or set_difficulty packet. Once
detected, the Sniffer will buffer the payload and signal the L2
Broadcast to construct a broadcast packet. Any packet apart
from notify and set_difficulty is discarded.

/*Job notify format */

{"method”: “mining.notify”, “id”: null, “params”: [“job_id”,"merkle branches”, ...]}

/*Job set_difficulty format */
{"method”: “set_difficulty”, “id": null, “params”: [difficulty value]}

Fig. 5: Payload Format

L2 Broadcast: The component is used to generate an
Ethernet broadcast frame. It first checks whether the payload
FIFO in the Sniffer has valid data. If the FIFO is empty, it will
stay idle. Otherwise, it will construct an Ethernet frame header
by inserting the broadcast address (FF:FF:FF:FF:FF:FF) in
the destination MAC address field. The data is then extracted
from the payload FIFO and appended to the generated frame
header to form a complete Ethernet broadcast frame. The frame
packet will be sent later to the network via the Dispatcher and
the Ethernet.

Dispatcher: It has two input and two output channels
(FIFOs). It works similarly to a switch and redirects input
data to a specific output channel. For data coming from the
ARM (the TX path (D—(@) or the L2 Broadcast (Path (@), it
will be sent to the TX path of the Ethernet (Path (5)). For data
received from the network (Path 6)—(7)), it will be redirected
to the RX path of the ARM (Path ().

Miners Mining Proxy | Mining Pool

i from Bitmain
T O S N
e

E3 ICPU [12Zynq
Fig. 6: Experimental Set-up

IV. EXPERIMENTAL SETUP AND RESULTS

We have three different mining proxy set-ups for compar-
ison, as shown in Fig. 6:

o (1) Original Proxy: runs on a CPU with TCP/IP broadcast.

e (2) SW-L2 Proxy: runs on a CPU with layer 2 broadcast.

o (3) Zyng Proxy: uses new hw/sw co-designed architecture.
Each proxy was connected to the same Bitmain mining pool,
AntPool [3], via 1 Gbps Ethernet. We leverage CPU-based
miners [12] and run up to 225 miners per proxy connection.
For the (2) and (3) setups, the miners were modified to get raw
socket packets directly from the Ethernet interface.

The proxies in (1) and Q) ran on workstations with Intel
i7 at 2.1GHz, while servers with Intel Xeon 4416 CPUs
at 2.1GHz were used for the miners. The Zyng Proxy is
built on an ONetSwitch45 board [4][10] featuring a Xilinx
XC7Z045 Zynq SoC [13] as shown in Fig. 7a. The ARM
core runs at 800MHz, while the FPGA accelerator works at
125MHz. The accelerator was synthesized and implemented
with Vivado (v2018.2). The Linux kernel running on the ARM
was generated by Petalinux (v2018.2).

A. Performance Improvement

Fig. 7b shows the real-time execution of the three proxy
setups over time. The x-axis represents the i*” job sent every
minute from the connected mining pool, while the y-axis
(plotted on a logarithmic scale) denotes the total transmission
time for broadcasting the i*" job to m miners. We start with
m = 50 miners and increase the number up to 225. For the
Original Proxy design, its transmission time (the red line with
dots in Fig. 7b) increases linearly when changing the number
of connected miners. The reason is that the Original Proxy
sends the job to all the miners one-by-one via TCP/IP. Table I
shows that the total transmission time for the Original Proxy
to deliver a job to 225 miners is about 6030 us.

TABLE I: Mining Proxy Speedup

. Performance
225 Miners CPU Zynq
TCP/IP Broadcast (D 6030 ps (26.8 ps/miner) -
Layer 2 Broadcast @ 51 ps 329 us
Speed-up ~118x ~2079x

(@ original Proxy, Q) SW-L2 Proxy; 3) Zynq Proxy

When leveraging layer 2 broadcast, the SW-L2 Proxy only
needs to send one job request to connected switches. The
switches then dispatch the job to all the connected miners.
This significantly reduces the transmission time (the blue line
with triangles) compared with the Original Proxy. Moreover,
the transmission time of the SW-L2 Proxy is independent of the
number of miners connected. As reported in Table I, it takes
51 ps to inform 225 miners of a new job, which is 118 faster
than the time taken by the Original Proxy design.

Compared to SW-L2 Proxy, the Zyng Proxy (the green
line with rectangles) delivers much higher performance, as
shown in Fig. 7b. To transmit a new job to all the connected

(a) Zynq Platform: ONeSwitché Board

10°
—8— Original Proxy
e —4— SW-L2 Proxy
OV

104 $ \:ﬁ?{)?'\’,\,/ A —&— Zyng Proxy
g
[
E 10
=
c
2
2 102
g 10
[}
=
°
a 10! O HOHPDH

Q 9O VRN A AY AV
//Q //() ///\ //\’ //\’ //'\’ //'\’ //’L //’L //’L
10°

12345678 91011121314151617 1819202122232425
i-th Job
(b) Real-time Execution of the Mining Proxies

Fig. 7: Hardware Platform and Performance Comparison

TABLE II: Resource Utilization on ZYNQ Z-7045

LUT LUTRAM FF BRAM-18Kb
Used 10159 652 16893 87
Utilization (%) 4.7 0.9 3.9 8.0

miners, it only takes about 2.9 us as reported in Table I. The
Zyngq Proxy achieves nearly 2079x and 18X speedup with
225 miners compared to the Original Proxy and SW-L2 Proxy
implementations, respectively.

B. Resource Consumption

In terms of the hardware cost, as reported in Table II,
the resource utilization of the Zynqg Proxy is very low. This
illustrates that, although we used ONetSwitch45 board for
implementation, the proposed proxy can be implemented on
smaller and more cost-efficient platforms such as the Zynq Z-
7010. This will significantly reduce the cost compared to the
existing Intel NUC-based mining proxies.

C. Discussion

From a performance perspective, one might argue that
a hand-optimized CPU implementation of the mining proxy
could prove better than our hardware/software co-designed
platform. However, for CPU implementations, the TCP/IP ker-
nel stack becomes a bottleneck, even with a highly optimized
implementation of the network stack, which means all the
CPUs will be occupied for network activity. In our platform,
the CPUs are free to execute other workloads while the FPGA
handles the job broadcasts in an efficient manner. Furthermore,
our proposed approach opens up the possibility of applying
hardware/software co-design methodology to acceleration of
the mining pool server and the full-node network as well
by offloading certain functions on FPGAs. For example, the
FPGA integrated in a mining pool server can directly generate
jobs after receiving transactions and block information from

the network, and send the job to the connected mining proxy
or miners. Likewise, for a full-node, the FPGA can help with
fast relaying of blocks by offloading the block verification and
transmission.

V. RELATED WORK

FPGAs are widely deployed in the cryptocurrency domain.
Most of the prior work [5][6][8] focuses on developing various
high-performance and low-power consumption algorithms for
mining cryptocurrencies. However, as the current best hashing
rates are dominated by ASIC miners, FPGA-based miners
have become less attractive. In today’s miners (for example
Bitmain Antminer [2]), FPGAs are used as the control unit
to communicate with mining pools and send jobs to its ASIC
miners.

In [9], the authors used FPGAs from a network perspective
to develop a key-value store accelerator to reduce latency when
accessing Merkle hashes stored in a full node. In [7], the
authors proposed various mechanisms to improve the security
of the Stratum protocol. In contrast to this existing work, we
address the scalability issue in mining proxies by proposing
a hardware/software co-designed architecture for the Stratum
mining proxy.

VI. CONCLUSION

In proof-of-work cryptocurrencies like Bitcoin, a mining
proxy is used to manage miners locally, and this can become
a performance bottleneck and hamper scalability. In this paper,
we show how to use a layer 2 broadcast mechanism for sending
jobs from the mining proxy to the miners. Our broadcast
mechanism can be implemented in both software running
on a CPU or hardware synthesized on an FPGA. From our
experiments, the modifications to the mining proxy can achieve
a speedup of 2079x in transmission time compared to an
original Intel i7 server implementation.

ACKNOWLEDGMENTS

The authors thank Ji Yang from Xilinx, and Feng Jin, Qun
Li, Xunliao Guo and Youqing Han from Bitmain for their
valuable support and useful discussions.

REFERENCES
[1] CoinMarketCap.
2019-03-28.
[2] Bitmain, 2019. https://www.bitmain.com/.
[3] Bitmain. AntPool, 2019. https://www.antpool.com/.

[4] Chengchen Hu et al. Design of all programable innovation platform
for software defined networking. In Presented as part of the Open Net-
working Summit 2014 (ONS 2014), Santa Clara, CA, 2014. USENIX.

[5] J. Barkatullah et al. Goldstrike 1: CoinTerra’s First-Generation Cryp-
tocurrency Mining Processor for Bitcoin. IEEE Micro, Mar 2015.

[6] M. V. Beirendonck et al. A Lyra2 FPGA Implementation for
Lyra2REv2-Based Cryptocurrencies. arXiv, 2018.

https://coinmarketcap.com/all/views/all. ~ Accessed:

[71 Ruben Recabarren et al. Hardening stratum, the bitcoin pool mining
protocol. CoRR, abs/1703.06545, 2017.

[8] Teknohog et al. Open Source FPGA Bitcoin Miner, 2011. https://github.
com/progranism/Open- Source- FPGA-Bitcoin-Miner.

[9] Y. Sakakibara et al. An FPGA NIC Based Hardware Caching for
Blockchain. In HEART, 2017.

[10] MeshSr. ONetSwitch Development Board, 2019. http://www.meshsr.
com/SmartSwitches/ONetSwitch45.

[11] Marek Palatinus. Stratum Mining Proxy, 2019. https:/github.com/
slushO/stratum-mining- proxy.
[12] Pooler. CPU Miner, 2019. https://github.com/pooler/cpuminer.

[13] Xilinx. Zyng-7000 SoC, 2019.
silicon-devices/soc/zyng-7000.html.

https://www.xilinx.com/products/

